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ABSTRACT

Our work presents a mechanism designed for the selection
of the optimal information provider in a multi-agent, het-
erogeneous and unsupervised monitoring system. The self-
adaptation mechanism is based on the insertion of a small
set of prepared challenges that are processed together with
the real events observed by the system. The evaluation of
the system response to these challenges is used to select the
optimal information source. Our algorithm uses the concept
of trust to identify the best source and to optimize the num-
ber of challenges inserted into the system. The mechanism
is designed for intrusion/fraud detection systems, which are
frequently deployed as part of online transaction process-
ing (banking, telecommunications or process monitoring sys-
tems). Our approach features unsupervised adjustment of
its configuration and dynamic adaptation to the changing
environment, which are both vital for these domains.

Categories and Subject Descriptors

I.2.11 [ARTIFICIAL INTELLIGENCE]: Distributed Ar-
tificial Intelligence—Intelligent agents, Multiagent systems;
C.2.0 [COMPUTER-COMMUNICATION NETWORKS]:
General—Security and protection

General Terms

Algorithms, Security

Keywords

trust, service selection, security, intrusion detection

1. INTRODUCTION
The increasing number of electronic transactions and a

growing volume of security surveillance data, motivate a
rapid development of intelligent systems that are able to
autonomously process the data and autonomously identify
cases of anomalous behavior. Typical applications of such
systems are fraud detection in electronic transactions [2],
analysis of the maritime shipping data provided by the AIS
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active position-tracking system [12] and network intrusion
detection [16].

We are particularly interested in the self-adaptive sys-
tems based on the anomaly detection paradigm [7]. Systems
based on this paradigm do not rely on a predefined set of
rules or attack signatures. Instead, they use the past ob-
servation of normal system behavior to build a predictive
system model and to compare the predicted state of the
system with the actual observations. The discrepancies be-
tween the prediction and observation are then considered as
anomalous and are reported to supervisors/administrators.

The anomaly detection methods do not extract all fea-
tures of the data, but concentrate on the features that are
characteristic of typical attack cases in a given domain. The
industrially-deployed anomaly detection methods (such as
those discussed in Section 4) implicitly contain a significant
amount of expert knowledge about the problem domain.
This expert knowledge compensates for the lack of appropri-
ate (classified) training data which is typically inaccessible
due to the high data volumes and thus expensive manual
classification. Furthermore, the individual anomaly detec-
tion methods suffer from relatively high classification error
rates (detailed in Sect. 2) and the system needs to com-
bine several anomaly detection methods to improve their
results [1]. This approach is similar to the ensemble classi-
fication/learning techniques [17], that use a set of classifiers
differentiated either by their training set, their algorithm
or used features to provide better results. However, most
ensemble classification approaches are based on the use of
representative and completely labeled training sets.

We position our work in domains where it is difficult to
obtain such training sets, due to the combination of a high
number of events in the data, highly dynamic system be-
havior and relatively high cost associated with labeling the
training set elements with ground truth. Our goal is to se-
lect the best classification provider from the set of classifier
agents, in an unsupervised, open and dynamic system. We
explicitly do not address the issues related to building the
best aggregation function, but our method provides a means
of evaluating the performance of the agents in the system
and selecting the best existing agent.

We assume that the system (as shown in Fig. 1) con-
tains several types of agents: all classifier agents process the
events in the shared input sequence and classify them as nor-
mal or anomalous. Some of these agents will use anomaly de-
tection or other techniques to classify the events individually,
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while the others may specialize in aggregating the opinions
of the others, embodying an aggregation function and thus
defining a specific individual classifier combination. In our
work, we do not distinguish between these two subgroups.
The user agents are agents that represent user preferences
towards the system and are tasked with dynamic identifica-
tion of the optimal system output for a specific user. In order
to select the optimal system output, a user agent challenges
a classifier agent with events for which he already knows the
actual class they belong to. These so-called challenges [24]
can be inserted between the events processed by the sys-
tem, evaluated with the other events and the correctness of
their classification can be used to evaluate the classifier’s
effectiveness. The challenges do not completely cover the
behavior and characteristics of the event sequence (as would
be necessary for a representative training set), but rather
cover few specific cases that are of particular interest for a
given user agent and that would manifest themselves in a rel-
atively uniform manner in the background event sequences
with varying characteristics.

Figure 1: System overview, with underlying events,
classifier agent’s evaluations (solid blue connectors),
optimal evaluations from the user agent’s perspec-
tive (solid, bold red connectors) and inserted chal-
lenges (dashed orange connectors).

The approach to partner evaluation based on response to
challenges has several interesting properties that are espe-
cially relevant in the intrusion detection context:

• The system protects the privacy of preferences of
each user agent by hiding the challenges in the real
data in a manner which makes them undistinguish-
able from the background events by classifier agents
and protects the identity of the challenge-injecting user
agent from the other user agents. Such indirect expres-
sion of preferences protects the system from insider at-
tacks against configuration files or other explicit policy
specifications.

• Besides the protection of the individual user prefer-
ences, the system is also naturally extensible into com-
petitive environments. When we postulate the clas-
sifier agents provided by several service provider com-

panies, the use of the system presented in this pa-
per allows efficient selection of the best intrusion de-
tection partner (represented by one or more classifier
agents) and real-time monitoring of this partner’s per-
formance.

The remainder of the paper is organized as follows. In
Sect. 2, we formulate the problem of selecting the best clas-
sifier agent on an abstract level. In Sect. 3, we present a
solution to this problem. This solution is used by the pro-
totype described in Sect. 4, which is evaluated in Sect. 5.
In Sect. 6, we discuss literature related to our work before
concluding in Sect. 7.

2. ABSTRACT PROBLEM SPECIFICATION
The problem features a set of classifier agents A =

{α, . . . , αg} that process a single, shared open-ended se-
quence Φ = 〈ϕ1, . . . , ϕi, . . . 〉 of incoming events and use
their internal models to divide these events into two cate-
gories: normal and anomalous. The events are inherently
of two fundamental types: legitimate and malicious, and
the goal of the classifier agents is to ensure that the normal
class as provided by the agent is the best possible match to
the legitimate traffic class, while the anomalous class should
match the malicious class. The classification thus has four
possible outcomes [16] for each event ϕ, two of them being
correct classifications and two of them the errors (see also
the confusion matrix in Table 1).

Table 1: Confusion matrix
actual class

legitimate malicious

classification
normal true positive false positive

anomalous false negative true negative

The classifier agents actually provide more information, as
they internally annotate the individual events ϕ with a con-
tinuous ”normality”value in the [0, 1] interval, with the value
1 corresponding to perfectly normal events and the value 0 to
completely anomalous ones. This continuous anomaly value
describes an agent’s opinion regarding the anomaly of the
event, and the agents apply adaptive or predefined thresh-
olds to split the [0, 1] interval into the normal and anomalous
classes.

Given that the characteristics of the individual classifier
agents αk are unknown in the dynamically-changing envi-
ronment, the system needs to be able to identify the optimal
classifier autonomously. Furthermore, the system can have
several users with different priorities regarding the detection
of specific types of malicious events. In the network mon-
itoring use-case, some of the users concentrate on major,
infrastructure-type events only (such as denial of service at-
tacks), while the other users seek information about more
subtle attack techniques targeting individual hosts. The
users are represented by the user agents and these agents
are assumed to know their users’ preferences. Their pri-
mary goal is to use their knowledge of user preferences to
dynamically identify the optimal information source and to
change the source when the characteristics of the environ-
ment or user preferences change. To reach this goal in an
environment where they have no abstract model of classifier
agents’ performance, they rely on empirical analysis of clas-
sifier agents’ response to a pre-classified set of challenges.
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In the following, we will analyze the problem from the per-
spective of a single user agent, which tries to select the best
available classification agent, while keeping the number of
challenges as low as possible. The challenges are events
with known classification, which can be inserted into the
flow of background events as observed by the system, pro-
cessed by the classifier agents together with the background
events and finally removed before the system reports the re-
sults to the users. The processing of the challenges allows
the user agents to identify the agent which achieves the best
separation of the challenges that represent known instances
of legitimate behavior from the challenges that represent
known malicious behavior.

The challenges inserted by the user agent are of two differ-
ent types: the malicious challenges correspond to known at-
tack types, while the legitimate challenges represent known
instances of legitimate events that tend to be misclassified
as anomalous. Each classifier agent is then characterized
by two probability distributions, empirically estimated from
the continuous anomaly values attributed to the two types
of challenges, as we can see in Fig. 2. We assume that the
anomaly values of both the legitimate and malicious chal-
lenges define normal distributions, with the parameters x̄
and σx for the malicious challenges and ȳ and σy for the
legitimate ones. The distance between the estimated mean
values of both distributions (x̄ and ȳ), normalized with re-
spect to the values σx and σy represents the quality of the
classifier agent, defined as its effectiveness: the ability to dis-
tinguish between the legitimate events and the attacks. The
effectiveness of an agent is the value which will be estimated
by the trust modeling approach introduced in Sect. 3.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

N
um

be
r o

f e
ve

nt
s

Anomaly/Normality

Anomaly distribution of traffic
Anomaly distribution of true positive challenges
Anomaly distribution of false positive challenges

Figure 2: Distribution of challenges on the back-
ground of the anomalies attributed to one set of
events. The anomalous events are on the left side of
the graph, while the normal events are on the right.

The insertion of challenges into the real traffic is not only
a difficult problem from the technical perspective (due to
the high volume of events processed in near-real-time and
hard performance limitations of the system), but can also
influence the effectiveness of the classifier agents based on
anomaly detection approaches. As these agents are not able
to distinguish the challenges from the real events, the chal-
lenges are included in their traffic model, making it less rep-
resentative of the background traffic and therefore reducing

its predictive ability.
In the next section, we present a user agent algorithm

which dynamically determines the optimal number of chal-
lenges necessary for the reliable identification of the best
classifier agent, while taking into account the: (i) past ef-
fectiveness of the individual classifier agents, (ii) number of
classifier agents and the perceived differences in their effec-
tiveness, (iii) hard performance limitations imposed by the
system and (iv) user-defined confidence levels.

The mechanism as presented in this paper only relies on
the direct trust experiences [11] of each user agent (inter-
action trust). Extending the mechanism with other ap-
proaches, such as witness reputation or certified reputation
is straightforward. On the other hand, the use of such col-
laborative mechanisms has important security implications,
and will be a subject of a dedicated publication in the future.

3. ALGORITHM
In this section we present a simple but adaptive algorithm

for choosing the best classifier agent. For each time step
i ∈ N, the algorithm proceeds as follows:

1. Let each classifier agent classify a set of challenges.

2. Update the trust value of each classifier agent, based
on its performance on the challenges in time step i.

3. Accept the output of the classifier agent with the high-
est trust value as classification of the remaining events
of time step i.

In the following, we first show how the trust values are
computed (Sect. 3.1), and secondly, how to determine the
number of challenges that is necessary to guarantee accurate
trust values (Sect. 3.2).

3.1 Trust Model
As described in Sect. 2, we challenge classifier agents in

each time step i with events for which we already know the
actual class, i.e. whether they are malicious or legitimate.
So, we challenge a classifier agent α with a set of malicious
events and a set of legitimate events. For each of these two
sets, the performance of the agent is described by a mean
and a standard deviation: (x̄, σx) for the set of malicious
challenges and (ȳ, σy) for the set of legitimate challenges.
Both means lie in the interval [0, 1], and x̄ close to 0 and ȳ
close to 1 signify accurate classifications of the agent respec-
tively (see again Fig. 2). Based on this performance in time
step i, we define the trust experience ti

α with that classifier
agent α as follows:

ti
α =

ȳ − x̄

σy + σx
. (1)

The intention behind this formula is that an agent is more
trustworthy, if its classifications are more accurate (x̄ is low
and ȳ is high), and more precise (the standard deviations are
low). Note that ti

α lies in (−∞,∞); however ti
α will rarely

be negative in practice.
To get the final trust value Tα for an agent α, we aggregate

the past trust experiences with that agent, as proposed in
the FIRE trust model [11]:

Tα =
∑

i

wi · ti
α , (2)



AAMAS  2009 • 8th International Conference on Autonomous Agents and Multiagent Systems • 10–15 May, 2009 • Budapest, Hungary 

1012

where wi are weights that allow recent experiences a higher
impact.

The values of the coefficients wi are determined according
to the FIRE model, and their monotonous decrease with in-
creasing time difference ensures that the most recent values
are emphasized relative to older ones. In our current system,
the weights decrease exponentially. The system (described
in Sect. 4) receives the input events in 5 minute batches,
and assigns the same weight to all events in each batch.
The weight of the challenges from the batch i is determined
as:

wi =
1

W
e(j−i)

ln(0.1)
4 , (3)

where the j denotes the current time step, and the value of

the coefficient ln(0.1)
4

ensures that challenges from the fifth
batch (the oldest one being used) are assigned a weight of 0.1
before the normalization. The normalization is performed
simply by dividing all the the weights by the sum of their
un-normalized values W to ensure that

∑
wi = 1. We are

currently using the challenges from the last 5 batches, mean-
ing that the (j − i) part of the exponent takes the values
between 0 and 4. Please note that the specific assignment
of weights wi is highly domain specific, and is only included
as an illustration of the general principle. Deployment of
the mechanism in other domains (such as maritime traffic
monitoring) would result in other values.

3.2 Determining Number of Challenges
The number of challenges used as basis for the computa-

tion of the trust experiences ti
α should be as small as pos-

sible while at the same time providing accurate results for
the trust experiences. This means that we want to know
the minimum number of challenges n for computing x̄ and ȳ
which gives certain guarantees about the estimation of the
actual means μx and μy (estimated by x̄ and ȳ respectively).
In Sect. 3.2.1, we show how we can choose a number of chal-
lenges n such that our estimates are guaranteed to be within
a specified margin of error m. In Sect. 3.2.2, we show how
to determine such a margin of error m that fulfills our needs,
basing the margin of error on the trustworthiness of the clas-
sifier agents in the system. Finally, in Sect. 3.2.3, we show
how we choose the final number of challenges, in order to
respect computational constraints.

3.2.1 Guaranteeing margin of error m

At the outset, let us make two reasonable assumptions.
First, we assume that the samples are normally distributed,
which is the common assumption if nothing is known about
the actual underlying probability distribution. This assump-
tion has been also consistent with our empirical results so
far. Second, as suggested in [15], we assume the sample
standard deviations which we found in past observations to
be the actual standard deviations σx and σy.

Then, the following formula gives us the number of chal-
lenges n that guarantees a specified margin of error m when
estimating μx (or μy analogously) [15]:

n =

(
z∗σx

m

)2

, (4)

where the critical value z∗ is a constant that determines how
confident we can be. Table 2 shows z∗ for specific confidence
levels. More specifically, the integral of the standard normal

distribution in the range [−z∗, z∗] equals the respective con-
fidence level. If z∗ is for instance chosen for a confidence
level of 99%, we know that if we use n challenges for com-
puting x̄, the actual mean μx will lie in the interval x̄ ± m
with the probability of 0.99.

Table 2: Critical values z∗
confidence level 90% 95% 99%
critical value z∗ 1.645 1.960 2.576

3.2.2 Choosing margin of error m

Our mechanism chooses the margin of error m in such
a way that we can be confident that the pair-wise order
between the most trustworthy agent and every other agent
is correct. In the following we explain how this is done.

Let us call the currently most trustworthy agent α and
let β be any other agent, so that we have Tα ≥ Tβ . We
now want to make sure that for the next trust experience
in step i, this order is not reversed by chance. Recall that
a trust experience ti

α is defined as shown in formula (1).
As we use 2n challenges to find ȳ and x̄ respectively, the
overall margin of error for the difference of ȳ and x̄ will not
be higher than 2m. Hence, the largest margin of error m′

for which ti
α ≥ ti

β is guaranteed (with the given confidence)

when ti
α takes the lowest and ti

β the highest possible value
within their “guaranteed” range:

ti
α ≥

=:a1︷ ︸︸ ︷
ȳα − x̄α −2m′

σyα + σxα︸ ︷︷ ︸
=:a2

=

=:b1︷ ︸︸ ︷
ȳβ − x̄β +2m′

σyβ + σxβ︸ ︷︷ ︸
=:b2

≥ ti
β . (5)

However, we do not want to choose m′ to guarantee ti
α ≥ ti

β ,
but to guarantee that the order Tα ≥ Tβ will not be reversed
by chance. Therefore, we also have to account for old expe-
riences. Let cα denote the sum of the old experiences with
agent α, weighted as when computing a new Tα (see eq.
(2)), i.e., cα =

∑
j<i wj · tj

α. Let cβ analogously denote the
weighted sum of old experiences with β. Then we need to
choose m′ such that the worst case is:

Tα ≥ wi · a1 − 2m′

a2
+ cα = wi · b1 + 2m′

b2
+ cβ ≥ Tβ , (6)

where the inner equation can be solved to give:

m′ =
b2(a1wi − a2cβ) − a2(b1wi + b2cα)

2wi(a2 + b2)
. (7)

So, a choice of a margin of error m with the constraint
m ≤ m′, guarantees with the specified confidence that for
any agent β the order Tα ≥ Tβ will not be reversed by
chance, i.e., when it really is the underlying order. To limit
the number of challenges, we choose for each agent the max-
imal margin of error m that fulfills this constraint, which is
given by m := m′. Since m′ is computed several times for
α (for every agent β), we choose for α the maximum among
these m′ to guarantee the order preservation. Finally, we
impose an additional lower bound on m, in order to prevent
the number of challenges to grow disproportionally when the
differences between the agent’s trustworthiness are insignif-
icant.



Martin Rehaky, Eugen Staab, Michal Pechouceky, Jan Stiboreky, Martin Grillyz, Karel Bartos • Dynamic Information Source Selection for Intrusion Detection Systems

1013

3.2.3 Considering computational restrictions
Let n be the number of challenges that was determined by

one user agent using the algorithm specified in Sections 3.2.1
and 3.2.2. Further, let nu be the upper bound of challenges
that can be processed by a specific user agent. In order to
determine this value, the system measures the free process-
ing time in the performance bottleneck (typically free CPU
cycles between the successive events or event batches), and
thus measures the processing time available for the adapta-
tion process. This time is then transformed into the number
of challenges (using the known average processing time per
challenge), equally divided between the user agents. User
agents use nu as their event quota.

Then the following number of challenges is used for each
agent as a basis for x̄ and ȳ respectively:

min(	nu/2
, n) . (8)

The final number of available samples assumes that the
nu samples are divided equally between legitimate and ma-
licious challenges, allowing at most 	nu/2
 challenges of each
type.

4. PROTOTYPE DEPLOYMENT
In order to evaluate the theoretical model in a production

environment, we have used the mechanism as a component
of the CAMNEP network intrusion detection system [20],
which is used to detect the attacks against computer net-
works by means of Network Behavior Analysis (NBA) tech-
niques [22]. These techniques are based on the exploita-
tion of NetFlow/IPFIX traffic statistics provided by network
routers [5] that contain only a limited amount of data about
each connection and do not include any sample of the ac-
tual content of communication. Consistent with the problem
specification in Sect. 2, the network traffic is represented as
a set of discrete events – the flows, defined as packet streams
with identical source IP address (srcIP), destination IP ad-
dress (dstIP), source and destination port (srcPrt,dstPrt)
and protocol (TCP/UDP/ICMP). Besides these basic prop-
erties, the system measures only the duration of each flow,
the number of packets and their aggregate size.

The NBA systems are not designed to detect stealth at-
tacks against single hosts, but provide a detection capability
against attacks that are significant from network perspective,
such as horizontal scanning (used to map the network for on-
line hosts, typical of malware propagation), vertical scanning
(used to determine the services offered by a host), denial of
service attacks and other relevant events. Furthermore, the
methods outlined in our system also aim to detect the ac-
tivity of hosts that were taken over by an attacker (typically
using zombie networks) and are used to stage further zombie
recruiting or exploitation.

The CAMNEP system used to perform the experiments
described in this paper incorporates five different anomaly
detection [7] techniques presented in literature. Each of the
methods works with a different traffic model based on a spe-
cific combination of aggregate traffic features, such as:

• entropies of flow characteristics for individual source
IP addresses [28],

• deviation of flow entropies from the PCA-based pre-
diction model of individual sources [14],

• deviation of traffic volumes from the PCA-based pre-
diction for individual major sources [13],

• rapid surges in the number of flows with given charac-
teristics from the individual sources [9] and

• ratios between the number of destination addresses
and port numbers for individual sources [23].

These algorithms maintain a model of expected traffic on
the network and compare it with real traffic to identify the
discrepancies that are identified as possible attacks. They
are effective against zero-day attacks and previously un-
known threats, but suffer from a comparatively higher error
rate [16], frequently classifying legitimate traffic as anoma-
lous (false positives), or failing to spot malicious flows (false
negatives). The classifier agents in CAMNEP can be di-
vided to two distinct classes:

• Detection agents analyze raw network flows by their
anomaly detection algorithms, exchange the anomalies
between them and use the aggregated anomalies to
build and update the long-term anomaly associated
with the abstract traffic classes built by each agent.
Each detection agent uses one of the five anomaly de-
tection techniques mentioned above. All agents map
the same events (flows), together with the same evalua-
tion of these events, the aggregated immediate anomaly
of these events determined by their anomaly detection
algorithms, into the traffic clusters built using different
features/metrics, thus building the aggregate anomaly
hypothesis based on different premises. The aggregated
anomalies associated with the individual traffic classes
are built and maintained using the classic trust model-
ing techniques (not to be confused with the way trust
is used in this work).

• Aggregation agents represent the various aggrega-
tion operators used to build the joint conclusion re-
garding the normality/anomaly of the flows from the
individual opinions provided by the detection agents.
Each agent uses a distinct averaging operator (based
on order-weighted averaging [29] or simple weighted
averaging) to perform the Rgdet → R transformation
from the gdet-dimensional space to a single real value,
thus defining one composite system output that inte-
grates the results of several detection agents. The ag-
gregation agents also dynamically determine the thresh-
old values used to transform the continuous aggregated
anomaly value in the [0, 1] interval into the crisp nor-
mal/anomalous assessment for each flow.

The user agent functionality is implemented as a collec-
tion of the agents. The user agent creates individual chal-
lenge agents, each of them representing a specific incident in
the past, and these temporary, single purpose agents interact
with the data-provisioning layers of the system in order to
insert the flows relative to the incident into the background
traffic and to retrieve and analyze the detection results pro-
vided by the classifier agents.

5. EVALUATION
In this section, we empirically verify the two most impor-

tant properties of the system:
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• Ability to dynamically adapt the number of challenges
to the actual lower bound necessary for effective sys-
tem introspection.

• Ability to select the optimal classifier agent from a
finite set of agents.

The CAMNEP system can be easily deployed in many dif-
ferent configurations, determined by the number and type
of the detection and aggregation agents in the system. For
the experimental evaluation detailed below, we have opted
for a modification of the configuration used by the authors
of [20], adding one supplementary detection agent based
on the TAPS algorithm [23] and 30 different aggregation
operators represented by aggregation agents, together with
the challenge-based self-adaptation infrastructure described
above. The system receives the network traffic in batches,
each of the batches containing the list of flows observed
during the last 5 minutes on the network (the most com-
monly used interval for NetFlow processing), together with
the flows inserted by the challenge agents. In Fig. 4, we
can see that the system observes about 80 000 flows every 5
minutes, with roughly 20 000 flows being malicious.

In Fig. 3, we can see the number of challenges as it evolves
over time. At the beginning, the system works with a fixed
number of challenges, in order to let the anomaly detection
methods in the detection agents adapt to the traffic. Once all
the detection agents start (at step 5, after 25 minutes), the
system starts to progressively insert more challenges, in or-
der to build an initial assessment of all classifier agents. The
number of challenges peaks at around the step 14, when it
reaches 100 (all challenges combined). Once a user agent has
built the initial trustworthiness for all agents, the number
of challenges decreases until it levels out at around 40 (le-
gitimate and malicious challenges combined), where it fluc-
tuates until the end of experiment. However, there are two
notable increases to explain: between steps 30 and 40, and
after step 60.

These increases can be easily explained when looking at
Fig. 5, which shows the number of false positives. During
these time intervals, we can notice that the choice of an ap-
propriate aggregation agent has a huge impact on the quality
of results, and that the adapted system is able to minimize
the number of false positives. The number of challenges is
lower between steps 40 and 60, when all agents provide sim-
ilar results, and increases again around 60, where the per-
formance of the aggregation agents varies somewhat more.
On the other hand we can see that the user agent did not
manage to avoid a spike in false positives around the step
20, when it did not yet have a representative trust model.

In Fig. 6, we show the selected classifier agent for each
time step. At the beginning, the system uses a default ag-
gregation agent 0, which implements a simple arithmetic
average. It is interesting to note that the system selects
from a relatively small subset of agents (numbered between
20 and 26) that are relatively similar to each other.

The experimental results presented above show that the
mechanism defined in Sect. 3 is able to effectively select the
classifier agents with a low number of false positives (Fig. 5),
and that it is able to dynamically adapt to changing envi-
ronmental characteristics by modifying the number of chal-
lenges inserted into the traffic (Fig. 3). Figure 6 also shows
that the system effectively identifies a small subset of rel-
evant classifier agents and then selects the active classifier
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Figure 3: Number of challenges over time, both le-
gitimate (top, green curve) and malicious (bottom,
red curve)
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known malicious (middle, red curve) and legitimate
(bottom, green curve) flows.

agent from this subset, consistently with the properties of
the trust modeling mechanism used by the user agents.

6. RELATED WORK
Several trust models base their trust estimation on binary,

positive or negative experiences (e.g. [27, 24, 26]). In our
case we deal with continuous assessments, and hence cannot
apply these models.

Often, mechanisms that use trust for selecting the “best”
service agent out of a set of initially unknown service pro-
viding agents, face the exploration vs. exploitation dilemma
which was investigated in depth in [25, 4, 6]. This dilemma
describes the balancing act between choosing the best service
agent out of the set of already known agents (“exploit”) and
looking for currently unknown service agents that might be
better than all those that are known (“explore”). However,



Martin Rehaky, Eugen Staab, Michal Pechouceky, Jan Stiboreky, Martin Grillyz, Karel Bartos • Dynamic Information Source Selection for Intrusion Detection Systems

1015

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

80

Fa
ls

e 
po

si
tiv

e 
(#

S
cr

IP
s)

Time

Figure 5: Number of false positives (in number of
incidents, identified by unique source IP addresses).
Each aggregation (classifier) agent is represented by
one thin curve, the solid curve shows the perfor-
mance of the classifier agent selected by the system.
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Figure 6: Selected classifier agent (identified by the
y axis ID number) for each time step. Note the
selection of the default agent 0 at the beginning.

as we use additional challenges for assessing the trustworthi-
ness of the agents, our mechanism avoids the issue of explore
vs. exploit. Instead we can – at the same time – explore the
system with challenges and“exploit” it by means of selecting
the best agent.

Reches et al. [18] show how to determine the appropriate
amount of (witness-)information about a set of agents in or-
der to chose the best one. In contrast to the lightweight ap-
proach presented in our work, their approach involves costly
computations. Also, they do not account for the dynamics
of a system.

From the related domains, we should mention that some of
the ensemble [17, 8] learning approaches, particularly those
based on the classifiers diversified by the features of the clas-
sified samples, are relevant to our work. However, past at-

tempts to apply these methods in the network security do-
main [10] are based on the use of pre-classified training data
sets to build the optimal aggregation function. They are
thus functionally similar to our solution, but are based on
an assumption of training data set availability that we do not
require (not considering the limited number of challenges).

7. CONCLUSION & FUTURE WORK
In our work, we have introduced a specific use of trust

modeling for an internal adaptation of a network intrusion
detection system. The technique is applicable to a wide
range of domains where classifier agents (considered as in-
formation sources) provide a binary classification capabil-
ity in a dynamic, unsupervised learning environment. Our
approach deploys a simplified implementation of an exist-
ing trust modeling mechanism in the individual user agents.
This mechanism allows the user agents to inject a set of
challenges – the events with known classification – into the
background defined by the events observed by the system in
real time, and use the classification of challenges provided by
the individual classifier agents to progressively build and up-
date their trustworthiness, which is a measure of their abil-
ity (i.e. competence [3]) to effectively separate the known
samples of malicious and legitimate events situated in the
current environment.

Besides the simple application of trust modeling tech-
niques for the assessment of other agent’s competence, the
mechanism is able to determine the optimal number of chal-
lenges that needs to be inserted into the system in order
to determine the best agent. This number depends on the
agent’s trustworthiness, classifier characteristics and other
dynamically observed data, significantly reducing any hu-
man involvement in the adaptation process to design-tie set-
tings of the initial values and admissible boundaries.

The work presented in this paper can be extended in three
directions. In the first extension, several user agents can ne-
gotiate a joint set of challenges to minimize the negative in-
fluence on the quality of the intrusion detection mechanism
of the classifier agents. In the second extension, user agents
can use an extension of trust modeling which would con-
sider the performance of classifier agents under specific envi-
ronmental characteristics, implemented by context-sensitive
trust modeling techniques [21, 19]. In the final extension, the
agents would use the trust modeling mechanism not only
to select the best information provider from a predefined
set, but they may identify an appropriate combination of
existing classifier agents which would further improve their
results.
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